
Lecturer: Aiad Ibraheem                              Operating Systems                                                                    
 

1

   

Deadlock 
• If the waited process request a resource held by other waiting process, this 

situation called a deadlock. 

• Resource instance: is the number of resources in the system of that type. 

• Ex: if the system has two CPUs, then the resource type  of CPU is two. 

• A process use a resource in only the following sequence: 

1. Request: if the request cannot be granted immediately, then the requesting 

process must wait until it can  acquire the resource. 

2. Use: the process can operate on the resource. 

3. Release: the process release the resource. 

 

• a set of processes is in a deadlock state when every process in the set 

is waiting for an event that can be caused by only another process in 

the set. 

• Consider a system that has one printer and one tape drive. Suppose that 

process P1 is holding the tape drive and process P2 is holding the 

printer. If P1 requests the printer and P2 requests the tape drive, 

deadlock occurs. 

 

Deadlock Conditions 
 A deadlock ban arise if the following four conditions hold simultaneously in a 

system: 

1. Mutual exclusion: only one process at a time can use the resource. if another 

process requests that resource, it must wait until that resource has been released. 

2. Hold-and-Wait: there must exist a process that is holding at least one 

resource and is waiting additional resources that are currently being held by 

other processes. 

3. Nopreemption: a resource can be released by the process holding it, after that 

process has completely its task. 

 

Basrah Univ., Education Collage, Computer Sc.                                            2008-2009 



Lecturer: Aiad Ibraheem                              Operating Systems                                                                    
 

2

4. Circular wait: There must exist a set { P0, P1, ..., Pn} of waiting processes, 

such that P0 waiting P1, and P1 waiting P2, ..... Pn-1 waiting Pn, and Pn waiting P0. 

 

 

Resource-Allocation Graph 

• This graph used to describe deadlock more precisely. 

• It consist of: 

1. set of processes P={P1, P2, ...., Pn} 

2. set of resources R={ R1, R2, ..., Rm} 

3. set of edges E  

- Pi Rj : denote that process Pi request Rj. 

- Rj Pi : denote that resource Rj allocates to process Pi. 

Ex: Let we have the following Resource Allocation Graph: 

 

 

 

 

 

 

 

 

 

• The sets of P, R, and E are: 

- P={P1, P2, P3} 

- R={R1, R2, R3, R4} 

- E={P1 R1, P2 R3, R1 P2, R2 P2, R2 P1, R3 P3} 

• Resource instances:  

- One instance of R1. 

- Two instances of R2. 

- One instance of R3. 

- Three instances of R4. 

 

 

Basrah Univ., Education Collage, Computer Sc.                                            2008-2009 



Lecturer: Aiad Ibraheem                              Operating Systems                                                                    
 

3

• Process States 

- Process P1 is holding an instance of resource R2, and is 

waiting for instance of R1. 

- Process P2 is holding an instance of R1 and R2, and is 

waiting for instance of R3. 

- Process P3 is holding an instance of R3. 

 

Notes: 

1. If the graph contains no cycle, then no process in the system 

is deadlocked. 

2. If the graph contains a cycle, then: 

- if each resource type has exactly one instance, then 

deadlock occur. 

- If each resource has several instances, then deadlock may 

occur. 

• Now consider that P3 request an instance of R2 (P3 R2) 

 

 

 

 

 

 

 

 

 

 

 

At this point, two cycles exist in the system: 

    P1 R1 P2 R3 P3 R2 P1 

    P2 R3 P3 R2 P2 

So, processes P1, P2, and P3 are deadlocked. P2 is waiting for 

R3, which is held by P3. P3 is waiting for either P1 or P2 to 

release R2. P1 is waiting P2 to release R1 

Basrah Univ., Education Collage, Computer Sc.                                            2008-2009 



Lecturer: Aiad Ibraheem                              Operating Systems                                                                    
 

4

               Deadlock Handling 

1.  Ensure that the system will never enter a deadlock state. 

2. Allow the system to enter a deadlock state and then recover. 

 

Deadlock Prevention 
    We prevent the deadlock by ensuring that at least one of the fourth 

conditions cannot hold. 

1. Mutual Exclusion: it is not possible to denying this condition, since 

there is non sharable resources. 

2. Hold-and-wait: we must guarantee that a process requests a resource, 

it does not hold any other resources. 

3. Nopreemption: if a process that is holding some resources and 

request another resource that cannot be  immediately to it, then all 

resources currently being her are released. 

4. Circular wait: we order all the resources. And each process can 

request resources in an increasing order. 

Ex: F(tape drive)=1, F(disk drive)=2, F(printer)=3. 

 

Deadlock Avoidance 

• Require that the system has some additional information about the 

processes. 

• The deadlock –avoidance algorithm dynamically examines the 

resource allocation state to ensure that there can never be a 

circular-wait condition. 

• Resource allocation state is defined by the number of available 

and allocated resources, and the maximum demands of the 

processes. 

                 Banker’s Algorithm 
                             Let n = number of processes, and m = number of resources types.  

• Available:  Vector of length m. If available [j] = k, there are k instances 

of resource type Rj  available. 

Basrah Univ., Education Collage, Computer Sc.                                            2008-2009 



Lecturer: Aiad Ibraheem                              Operating Systems                                                                    
 

5

• Max: n x m matrix.  If Max [i,j] = k, then process Pi may request at most k 

instances of resource type Rj. 

• Allocation:  n x m atrix.  If Allocation[i,j] = k then Pi is currently 

allocated k instances of Rj. 

 m

• Need:  n x m atrix. If Need[i,j] = k, then Pi may need k more instances of 

Rj to complete its task. 

 m

           Need [i,j] = Max[i,j] – Allocation [i,j]. 

Safety Algorithm 

1. Let Work and Finish be vectors of length m and n, respectively.  Initialize: 

Work = Available 

Finish [i] = false for i = 0, 1, …, n- 1. 

2. Find  i such that both:  

   (a) Finish [i] = false 

   (b) Needi ≤ Work 

    If no such i exists, go to step 4. 

3. Work = Work + Allocationi 

Finish[i] = true 

go to step 2. 

4. If Finish [i] == true for all i, then the system is in a safe state. 

 

Resource-Request Algorithm for Process Pi 

     Request = request vector for process Pi.  If Requesti [j] = k then process Pi wants k 

instances of resource type Rj. 

1. If Requesti ≤ Needi go to step 2.  Otherwise, raise error condition, since process has 

exceeded its maximum claim. 

2. If Requesti ≤ Available, go to step 3.  Otherwise Pi  must wait, since resources are 

not available. 

3. Pretend to allocate requested resources to Pi by modifying the state as follows: 

 Available = Available  – Request; 

 Allocationi = Allocationi + Requesti; 

 Needi = Needi – Requesti; 

• If safe ⇒ the resources are allocated to Pi.  

Basrah Univ., Education Collage, Computer Sc.                                            2008-2009 



Lecturer: Aiad Ibraheem                              Operating Systems                                                                    
 

6

• If unsafe ⇒ Pi must wait, and the old resource-allocation 

state is restored 

EX: Lets have 5 processes (P0- P4);  3 resource types: A (10 instances),  B 

(5instances), and C (7 instances). 

   Allocation Max Available 

   A B C           A B C    A B C 

    P0 0 1 0           7 5 3    3 3 2 

   P1 2 0 0            3 2 2   

   P2 3 0 2            9 0 2 

   P3 2 1 1            2 2 2 

   P4 0 0 2           4 3 3     

• The content of the matrix Need is defined to be Max – Allocation. 

   Need 

   A B C 

   P0 7 4 3  

   P1 1 2 2  

   P2 6 0 0  

   P3 0 1 1 

   P4 4 3 1  

• The system is in a safe state since the sequence < P1, P3, P4, P2, P0> 

satisfies safety criteria.  

             Ex:  P1 Request (1,0,2) 

• Check that Request ≤ Available (that is, (1,0,2) ≤ (3,3,2) ⇒ true. 

                                 Allocation Need Available 

   A B C           A B C   A B C  

  P0 0 1 0            7 4 3   2 3 0 

  P1 3 0 2           0 2 0   

  P2 3 0 1              6 0 0  

  P3 2 1 1            0 1 1 

  P4 0 0 2            4 3 1  

• Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2> 
satisfies safety requirement.  

• Can request for (3,3,0) by P4 be granted? 
• Can request for (0,2,0) by P0 be granted? 

Basrah Univ., Education Collage, Computer Sc.                                            2008-2009 


